Comparing different bases of symmetric group representations
Julianna Tymoczko (Smith College)
17-Feb-2021, 20:00-21:00 (5 years ago)
Abstract: We describe two different bases for irreducible symmetric group representations: the tableaux basis from combinatorics (and from the geometry of a class of varieties called Springer fibers); and the web basis from knot theory (and from the quantum representations of Lie algebras). We then describe new results comparing the bases, e.g. showing that the change-of-basis matrix is upper-triangular, and sketch some applications to geometry and representation theory. This work is joint with H. Russell, as well as with T. Goldwasser and G. Sun.
algebraic geometry
Audience: researchers in the topic
UC Davis algebraic geometry seminar
| Organizers: | Roger Casals, Erik Carlsson, Eugene Gorsky* |
| *contact for this listing |
Export talk to
